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Abstract

A semi-infinite crack along the interface of two dissimilar half-spaces extends under in-plane loading. Each half-
space belongs to a class of orthotropic or transversely isotropic elastic materials, the crack can extend at any constant
speed, and all six possible relations between the four body wave speeds are considered. A steady dynamic situation is
treated, and exact full displacement fields derived. A key step is a factorization that produces, despite anisotropy, simple
solution forms and compact crack speed-dependent functions that exhibit the Rayleigh and Stoneley speeds as roots.
These roots are calculated for various representative bimaterials.

Closed-form crack opening displacement gradient and interface stress fields are also derived from a general set of
coupled singular integral equations. The equation eigenvalues can, depending on crack speed, be complex/imaginary
conjugates, purely real, or zero. This suggests possibilities observed in other studies: oscillations and square-root sin-
gular behavior at the crack edge, non-singular behavior, singular behavior not of square-root order, and the radiation
of displacement gradient discontinuities at crack speeds beyond the purely sub-sonic range.

These possibilities are explored further in terms of two important special cases in Part II of this study [Int. J. Solids
Struct., 39, 1183-1198]. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The 2D study of interface cracks in perfectly bonded (welded) half-spaces of dissimilar elastic materials
under in-plane loading sheds light on the failure of composites. Static analyses of stationary cracks in
isotropic bimaterials (England, 1965; Erdogan, 1965; Rice and Sih, 1965) produced exact solutions by
classical complex variable methods (Muskhelishvili, 1975). The stresses exhibit, as observed previously
(Williams, 1959) in asymptotic results, both the standard square-root singularity (Sneddon and Lowengrub,
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1969) and an infinite number of sign reversals in the limit as the crack edge is approached. Thus, the crack
edge vicinity can undergo compression even if the applied stresses are tensile. The region for which the first
sign change occurs is a small fraction (e.g. England, 1965) of the crack length. Nevertheless, models that
allow crack surface sliding contact to remove the oscillatory behavior have been developed (Comninou,
1977). More recently, Ting (1990) and Ni and Nemat-Nasser (1991, 1992) examined the interface crack in
equilibrium between dissimilar anisotropic materials. The latter two studies considered both the stress-free
crack, and one that, after Comninou (1977), includes contact zones.

The actual crack extension process for dissimilar isotropic solids under in-plane loading has been
modeled in 2D transient studies (Brock, 1976) for the case of sub-critical crack speed. Liu et al. (1995) have
considered via asymptotics interface crack extension in isotropic bimaterials, with emphasis on the rigid/
elastic case. The transient results are approximate, but exhibit, nevertheless, stresses with square-root
singular/oscillatory behavior. The asymptotic studies demonstrate that the oscillatory behavior is main-
tained, but the singularity vanishes, for super-critical/sub-sonic crack extension, while the oscillations
vanish and a singularity not of square-root order appears for trans-sonic crack speeds.

That trans-sonic crack speeds can occur has been demonstrated for isotropic (Freund, 1979; Broberg,
1989) and orthotropic (Broberg, 1999) solids. For isotropic bimaterials, Yu and Wang (1994) have analyzed
anti-plane interface fracture for speeds that range between the constituent shear wave speeds. Indeed, the
in-plane isotropic bimaterial fracture work of Liu et al. (1995) follows from other analytical and experi-
mental efforts (Liu et al., 1993; Lambros and Rosakis, 1995), and itself has been extended (Huang et al.,
1996; Huang et al., 1998; Rosakis et al., 1999; Huang and Gao, 2001).

The present article is Part I of a two-part study that complements the aforementioned work: Steady
dynamic extension under in-plane loading of a semi-infinite crack along the interface of two perfectly
bonded dissimilar half-spaces is considered. The half-spaces belong to a class of orthotropic or transversely
isotropic materials, crack extension is at any constant speed, and all six possible relations between the four
body wave speeds are considered.

Exact expressions are obtained for the displacement fields in both half-spaces, and closed-form results
given for the crack-opening displacement gradients and the interface stresses. The results are examined for
their consistency with the results noted above, and for the general role of anisotropy on crack extension. A
key step in this regard is the factorization of certain functions of crack speed in the solution transform space
that leads to cancellations of terms that induce complex branch points in the plane of the crack speed. For
real crack speeds, this is of limited significance, but the cancellations also render, despite anisotropy, the
solution expressions in rather simple forms.

Moreover, functions related to, but simpler in form than, the classical Rayleigh (Achenbach, 1973) and
Stoneley (Cagniard, 1962) functions for isotropic elasticity arise. These allow the development of compact
expressions, exact to within simple quadratures, for the Rayleigh speeds and (when it exists) the Stoneley
speed. These speeds are calculated for five materials that typify the class of orthotropic or transversely
isotropic materials considered. The main purpose of Part I, however, is to provide the basis for studying
some important special cases of interface crack extension in Part II.

2. Basic problem

Consider two half-spaces and the Cartesian coordinates (x,y,z). The half-spaces are perfectly bonded
along the plane y = 0, x < 0. The half-space materials are each of a class of linear homogeneous anisotropic
solids whose non-trivial governing equations in plane strain in the absence of body forces have the form

Clillyxx + Caglhxyy + (€13 + Cas)tty xp = pily

Ca4Uly xx + C33Uy + (6‘13 + c44)ux.xy = pu,

(1)
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with the stress—strain equations
Ox = Cl1Uyxx + Ci3lUy y
Oy = Ci3lhxx + C33ly,y (2)
Ouy = Caa(Uyy + 1 x)

For the half-space y > 0, the additional subscript 1 is understood; the subscript 2 is understood for the half-
space y < 0. These equations hold for both orthotropic and transversely isotropic materials, where the x-
and y-axis are axes of material symmetry. The (u,,u,) are the (x,y)-components of displacement, while (-)
and ( ),, denote differentiation by time and a variable s, respectively. The constants (cy, ¢33, ¢13,cq4) are a
subset of the elasticities ¢; (i,k =1,2,...,6) in the generalized Hooke’s law (Sokolnikoff, 1983), and p is
the mass density. Eq. (1) is a special case of a general form that involves four constants that can be linearly
related to various subsets of the ¢; (Scott and Miklowitz, 1967). General observations on crystal structure
and the ¢ are given by Nye (1957) and Theocaris and Sokolis (2000). In the present case, the isotropic limit
for each half-space can be obtained by setting c¢;; = ¢33 = 4+ 2u, ¢13 = 4, cqy = u, where the additional
subscripts 1 (y > 0) or 2 (y < 0) are understood, and (4, 1) are the Lamé constants.

Both half-spaces are at rest when constant shear and compressive forces (line loads in the z-direction) of
magnitudes (t, g) are applied to opposite faces of the crack. The forces are translated toward the crack edge
with constant speed v, thereby extending the crack in the positive x-direction. As depicted schematically in
Fig. 1, a steady dynamic situation is achieved in which the crack edge also extends with speed v, and the
translating forces remain a fixed distance L from the edge. As also indicated, it is convenient to fix the
coordinates (x, y,z) to the moving crack edge, so that the interface conditions take the form

Oyl = Oyo = —10(x+ L), 0y =0y =—-00(x+L) (y=0,x<0) (3a)

Uyl — Uy = Uy] — Uy = Oxy] — Oyy2 = Oy — Oy = 0 (y = 07)(? > O) (3b)

Here ¢ is the Dirac function.

Because the process is one of steady plane-strain, field quantities in both half-spaces depend only on
(x,y), and the operator (-) in the inertial frame can be replaced with —v( ),,. For convenience, therefore, the
parameters

C.
W= Ca, U= % (4)

v
iy
= [ @
—
©
oon

O

Fig. 1. Schematic of interface crack extension under in-plane loading.
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are introduced, which allows the dimensionless quantities

- (5)
p=r (5b)
y=1+aff —m’ (5¢)
m=1+ % (5d)
co = vio (5e)

to be employed. The subscripts 1 or 2 are understood in Egs. (4) and (5a)—(5d), and
vg = min(vyy, vr) (6)

The definitions (5a)—(5d) follow from Payton (1983) and, in the isotropic limit, the v, are classical ro-
tational wave speeds. Egs. (1) and (2) can now be written as

(ﬁ - cz)uxxx + Uy yy + mu,y, x, = 0 (73—)
(1- cz)uy,xx + ottty + My, =0 (7b)
Co Uy
= — = — 7
e=—", n o (7c)

where the subscript 1 or 2 is understood for all quantities save (vy, ¢, x,v), and

1
;ox = Py, + (m— Duy,

lay = (m — Duyy + oy (8)
u )

1

;GXy = Uyy Uy,

For purposes of illustration, we consider (Payton, 1983; Brock et al., 2001) the constraints

2Vap<y<l+of (1 <B <o)
o+ p<y<l4+af (I<a<f) 9)
<<+ (1<f=0)

The class of materials governed by Eq. (9) includes beryl, cobalt, ice, magnesium and titanium, as well as
the isotropic limit. In addition, the displacements and their gradients are expected to vanish when
(x> + yz)l/ * 5 o0, and be non-singular almost everywhere, except at sites such as the crack edge (x,y) =0
and load positions x = —L, y = 0+.
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3. Relative displacement solution

It is convenient to first consider a problem governed by Egs. (6)—(9) and the boundedness/continuity
requirements, but with Egs. (3a) and (3b) replaced by the unmixed interface conditions

Ol — 02 =0y — 00 =0, ty —upp =UX), uy —up="Vx) (y=0) (10)

Here (U, V) are the relative tangential and normal crack face displacements, i.e. the crack-opening dis-
placements, and so must vanish identically for x > 0, and be continuous at x = 0. To solve this related
problem, the bilateral Laplace transform (van der Pol and Bremmer, 1950) and its inverse operator are
introduced:

F = /OOF(x)e""‘dx (11a)
F(x) :% /ﬁepxdp (11b)

In Eq. (11a) p is imaginary, and integration in Eq. (11b) is along a Bromwich contour in the p-plane.
Application of Eq. (11a) to Egs. (7a)—(7¢c), (8) and (10) gives a coupled set of second-order differential
equations in y with boundary conditions. This can be solved to give

1 mBe*aM\/l_’\/’_P N \/—_p R e*h‘y‘\/l_’\/’_l’ ~ \/Tp ~

—u, =—— |4 Y 4 — | — B ~ - B 12
W= 6= as <”U+ 7 VV)+B<b—a>s< Ut VV) (122)
| ae NV [ =p N\ mbe PN (L p )

—u, = — A A B BV 12
' B(b—a>s< 7t VV>+¢B(b—a>S<\/ﬁ U > (12b)
(0, 7) = / (U, V)e " dt (12¢)

C

Here C attached to an integral signifies integration over the real interval (—o00,0), and the subscript
k = (1,2) is understood on all terms save (y,;, p, U, V,S), while the subscript / = (2,1) when k = (1,2). For
half-space 1 (y > 0),

Ay | _ | =0iM 01 — Pidr(a+b), mbiR: || (13a)
Ay biOvouBy(a+b), + PM, —y Ry || 1y

|:BU:| _ [ —a\PIM, — BiQ14;(a + b), a1¢]R2:| {M} (13b)
BV —B%Q|M2 - a]P| ocsz(a + b)z mlB%Rz Ho

while for half-space 2 (y < 0),

|:AU] B [—szle — PAi(a+b), mzble} {Hz}
Ay byQrouBi(a+b), + oMy —y,Ry | [ 1y

[ By } | —aPM, —B30xA1(a+b), ap,R
—B,

—B30:M, — a;PoayBy(a+b), myB3R,
In Egs. (12a)—(12¢) and (14) the definitions

(14)

]

P=y+mB* Q=m+y (15a)
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¢=0ad® —A*, Yy=ob* B, Q=od®—B (15b)

M=A4+(1—-mB, R=cd4+BC, C=(m—1)-4 (15¢)
hold, where the subscript £ = (1,2) and

Val(a, b) _\/%\/Tix/rz—wzaz :%(\/T+2A3i\/T—2AB) (16a)

Vala+tb)=vVALB+mVA+B —m (16b)

T=A+B—-m’, A=a/p—c, B=V1-¢ (16¢)
The non-subscripted denominator term S in Egs. (12a) and (12b) is given by

S = u2M\M; + (a + b),(a + b)y(01B14> + 0uBrAy)] — 11{(A + B),R1 — (5(4 + B) R (17)

The transform solutions to the related problem are seen to be functions of /Ep and coefficients that are
combinations of quantities that are themselves functions of the dimensionless crack speed c, elasticities
and dimensionless material constants (o, f;, 7, mx). Introduction of the branch cuts Im(p) = 0, Re(p) < 0
and Im(p) =0, Re(p) > 0 for \/£p, respectively, guarantees that Re(\/p,/—p) = 0 in the cut p-plane.
Therefore, for ¢ such that (a;, b;) are real and positive, boundedness of Egs. (12a) and (12b) as |y| — oo is
assured.

4. Behavior of crack speed-dependent functions

In this light, introduction of the branch cuts Im(cy) = 0, [Re(co)| > nx+/B; and Im(co) = 0, [Re(co)| > mi
for (A, By), respectively, guarantees that Re(4,,B;) = 0 in a cut ¢y-plane. The branch points (n;, 1,4/ ;)
correspond to, respectively, the non-dimensionalized rotational and dilatational wave speeds in the two
half-spaces associated with the x-axis of material symmetry. In light of Eq. (9), the six general relations

np <n1\/ﬁ1 <}’12<I’l2\/ﬁ27 np <n2<n1\/ﬁ1 <I’12\/ﬁ2, ny <n2<n2\/ﬁ2 <n1\/ﬁ1 (188_—(3)
n2<n2\/ﬁ2<n1 <I’l|\/ﬂl7 ny < n <n2\/ﬁ_2<n] ﬁh ny < n <n1\/ﬂ1 <n2\/ﬁ2 (18d7f)

are possible, with equalities following as special cases. These relations correspond to those for isotropic
materials (Cagniard, 1962).

The quantities (a, b;) share the branch cuts of (4, B;), respectively, but Eq. (9) allows the additional
complex branch points defined by Eq. (7c) and

(o — 122 = 9, (1 + o) — 204 (1 + ) & i2my /o5 /74 — o — B (k=1,2) (19)

in the co-plane. These are also roots of b7 — a} and, indeed, the forms of Egs. (12a)-(12c) resulted by ex-
tracting the product (b; —a;)(b, — a;) and the factor b, —a; from, respectively, the denominator and
numerators of the expressions for (i, #,) that were originally derived. Cancellation, therefore, produced the
denominator factor b; — g indicated in Egs. (12a) and (12b). However, the exponential terms in Egs. (12a)—
(12c) become the same when b, = a;, and use of Egs. (15a)—(15c) and (16a)—(16c) and the related formulas

wa’y +B*p =0, aab=AB, ¢+ +m>=0 (20)

with subscripts k = (1,2) understood, shows that the resulting coefficients of the terms (U, V) /(b — a), also
behave as b; — a; — 0. That is, the terms (b; — ay, b, — a,) effectively cancel from the solution transforms.
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By then allowing a; + b, given by Eq. (16b), to be continuous across cuts associated with Eq. (19), even
though (ay, by, by — a;) remain multi-valued there, the transforms Egs. (12a)-(12c) exhibit only the branch
cuts of (4,,By,4,,B,). This feature becomes useful when crack speeds are such that v > v,.

In any case, the factorization simplifies the solution transforms, and produces the functions (Ry,S)
defined in Eqgs. (15¢) and (17), respectively. The R, are analytic in the ¢o-plane cut along Im(c) =0,
|[Re(co)| > ny and exhibit real roots that, in view of Eq. (16b), give the values ¢; = cpi (0 < cgrx < 1). Indeed,
rationalization of the formula R, = 0 gives a cubic equation in ¢} that corresponds exactly to one obtained
by Payton (1983) for the roots of a transversely isotropic Rayleigh function. That is, vgy = (crv;), 18 the
Rayleigh wave speed parallel to the x-axis of material symmetry for the material class considered here. The
term Ry is, despite being simpler in form than its isotropic counterpart, e.g. Achenbach (1973), the effective
Rayleigh function. As an alternative to the cubic equation solution, cg; can be, by following a general
approach (Brock, 1998), obtained exactly to within a simple quadrature as

C fap—(m-1 1 oV o/E—T
o\ e ") e e 20

Here the subscript 1 or 2 is understood, and Eq. (9) guarantees that the coefficient of Gy is real and positive.
The function S has the branch cuts Im(cg) = 0,19 < |Re(cy)| < n*+/ ", where

nop =min(ng), n*y/f = max(ng/f;) (22)
and k£ = (1,2). It can be shown that when

2
My + ouBia+b) | B — 1 — 2k < Beq+B), + ELR, (co = 1,10 = 1) (23)
% My Hye
where k = (1,2) and / = (2, 1), S exhibits the isolated real roots ¢y = tcs (0 < ¢s < ny).
That is, vs = csvy is the Stoneley wave speed (Cagniard, 1962) associated with the x-axis of material
symmetry. By a procedure analogous to that used for Eq. (21), a formula

Cg = \/SE i (24)

VBB + a1+ ya)y/Gam T ion)Gam/a + /@)

emerges that is exact to within simple quadrature. In Eq. (24)

So = (o By + a2ﬁ1)\/(\/;ﬁ+ 2_m2\/\/7+ 12— m2 + (VB +1—m),
X [ (Vof+ 1 —m), + (Vo + 1), (Vo +m — 1), + mo(v/aB + 1 — m)y[wy (/o + 1 —m),
+ (/2B + 1), (Vo + m — 1), (25)

where Eq. (9) guarantees that the right-hand side is real and positive. Expressions for Gg for all the cases
Eqgs. (18a—) and (18d-f) when Eq. (23) is satisfied are given in Appendix A. Those results involve Egs.
(152)—(15¢) and (16a)—(16¢c) and the additional definitions

M =44+(1-mB, R=c4+BC
A =va/e2—p, B =Vc—1 (26)
V20(d b)) = \/—T T VT2~ 442R2
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In Eq. (26) the subscript 1 or 2 is understood on all quantities. The appearance of the Rayleigh function in
Eq. (23) indicates that, should the Stoneley speed exist, it at least exceeds the Rayleigh speed corresponding
to the half-space with the lower rotational speed, i.e.

U < Up i esp > (CRUL), U < Upp i sy > (CRUL), (27)

5. Transform inversion

For crack extension that is sub-sonic with respect to both half-spaces (0 < v < vy) the quantities
(A, ar, By, by) are real and positive and, as noted, boundedness of Eqs. (12a)—(12¢) as |y| — oo is assured.
Therefore, inversion of Egs. (12a)—(12¢) reduces to, in light of Eq. (11b), the two integrals

1 AW N —
~ (LV ﬁ)e,, Ao (q=all b)) (28)

The analyticity of the right-hand sides of Eqgs. (12a) and (12b) implies that the entire Im(p)-axis in Eq. (28)
can serve as the Bromwich contour. Standard tables (Peierce and Foster, 1956) can be used to show that the
integrals give

l (qvx_t) 29
T(t—x)+¢q (29)

Egs. (12a) and (12b) then yield for 0 < v < vy

= s | s MUl AV o)
" B(b fla)Sn c (- x)(zh Ty [BuU(0)bly| + By ¥ ()(t = x)] “
= B® lfi)sn /C (- x)(zit+ 7 [y U(6)(t = x) + Ay V (t)a]yl]
WB(ZITZ)SH /C = x)c21z+ by [=BuU(0)(t = x) + BV (1)b]y]

The subscript £ = (1,2) is understood on all terms save (u;,S,x,y,¢,U, V), and the subscript / = (2, 1).

For crack speeds v > vy, however, various elements of (4, ay, By, by) are imaginary, i.e. Eq. (26) comes
into play, and the exponential coefficients in Egs. (12a)—-(12c) may become complex. It is therefore con-
venient to define for ¢y £ i0 the real and imaginary parts of the Stoneley term S as

Is

S = Rg F il = 31
s+ Us, @ Rs (31)
and the real and imaginary parts of the other factors in Egs. (12a)—(12c) as
mB [AU}_[Rj/;in’} a [—AU]_[R‘C’q:iIg}
Wb—a)lay ] R 7y " Bo—a)| 4y | [REFiL (32)
1 [—BU] _ [qu:ug} mb {BU} _ {Rg:FiIg]
B(b—a)| By | |R,Fi)] yB(b-—a)|By| |R,TFil]
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In Eq. (32) the subscript £ = (1,2) is understood for all terms. General results needed to identify these real
and imaginary parts when v > v, for all the cases Eqs. (18a—c) and (18d-f) for either half-space 1 or half-
space 2 are given in Appendix B.

In light of these results, it can be shown that Egs. (12a)—(12c) again gives transforms that are bounded
for |y| — oo, and that when crack speeds are sub-sonic with respect to the half-space & (0 < v < vy), ap-
plication of Eq. (11b) gives for that half-space

w=t [ (t_xditﬂzy{[(w +ol¥)aly] — (1Y — wRY)(t = )U() — (I} — R )aly]

R o) =0} +7] [ oSt (R o bl — 0~ o))

c )? + b2
x U(t) = [(Iy — oRp)bly| + (Ry + oly)(t — x)[V (1)}

d ¢ — oR{)a o+ old)(t—x L+ wlla
- /(I +a2 S { = U8 = oRe)alyl + (Re + ol (t = )JU(1) + [(Re + wi¢)aly]

— (Il = oRL)(t—x)]V (1)} +% / ( dr { = Iy — wRY)bly| + (Rp + o} )(t — x)]

c (t— x)2 + b2y?
x U(1) + [(Ry + @l})bly| = (I — oRp)(t = x)]V (1) }

o H
Fi= Rs(1 + w?) (33)

Here the subscript £ = (1,2) is understood and / = (2, 1), and the result (30) falls out as the special case
vy = vy. For crack speeds that lie in the trans-sonic range for the half-space k (vy < v < +/f40w), the
displacements for that half-space are

w="f (t_)d’+y (R + ot )aly| = (15 = oRY)(t = 0]U () = (1] = wR})aly

+ R+ ol)(t—x)]V ()} —— /ﬁ[([‘f oRNU() + (R + ol )V (1))

+ ARy + oI )U(x + V|y]) — (Iy — oRp)V (x + 6/|])]
F dr
T Je (t=x)" + a2y

L B e

(34)
{ = (¢ = wR)alyl + (Re + wl)(t = x)]U (1) + [(Re + wlg)aly]

(R + oly)U(1) + Iy — oRp) V(1))

+F[= (I} — oRp)U(x + b'|y]) + (R} + lp)V (x + |y])]

Again, the subscript £ = (1,2) is understood, and / = (2,1). It is also understood that the non-integral
terms do not appear unless x + &'|y| < 0, and that the integrals involving " must then be interpreted in
the Cauchy principal value sense. When crack speeds are super-sonic with respect to a half-space
k (v > \/B.vw), the displacements for that half-space are
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F d¢
Uy = *—l/—, (1] = R U(t) + (R + oL )V ()] + F[(RY + oI )U(x +d|y|)
T Jot—x—dl|y

F, de
(I — RV 4 __’/4
@ - Ry eralh -2 [

+F[(Ry + ol )U(x + by]) = (Iy — RV (x + &|])]

(I — oRG)U(1) + (Ry + wly) V(1))

(39)
= = [T R IV + G~ RV (0] + R — oR)U G+ a5

R+ ol ] -2 [ S (RS + oI UG) + (1f — oR)V (1)

ct—x—="0ly|
+ F[=(5 — oRp)U(x + V|y]) + (R) + olp)V (x + b'|y])]

In this instance, the first and second set of non-integral terms in each displacement do not appear unless,
respectively, x + @'[y| < 0 and x + #'|y| < 0. Then, the corresponding ¢'—and »'—integrals must be taken in
the Cauchy principal value sense. For the case where crack speeds are super-sonic with respect to both half-
spaces, Eq. (35) reduce to

H ’ ’ H dt
= SRSV + o) £V o ] - [ U + Ry )
U, dr U v / dr U 4 (36)
, =——— | ———[RU 1. V(¢ ——— [RyU(t) + I5 V(¢
o=t [ e v+ [ e+ 1)

S' = ml(d + ), (d + V), (B4 + wByA|) — 2M{My] + i (A’ + B'),R| + pi5(4’ + B), R,

In both Egs. (35) and (36), the subscript £ = (1,2) is understood, and / = (2, 1).
It can be shown that Egs. (33) and (34) are continuous when v = vy, and Egs. (34) and (35) are con-

tinuous when v = /f,vy. A key tool in the demonstration is the standard (Carrier and Pearson, 1988)
relation
(t—)c;]—2+q2 — nd(t—x) (g — 0+) (37)

Egs. (31) and (32) and the results of Appendix B show that the real and imaginary parts that appear in Egs.
(33)—(36) are also continuous for all positive values of v. Therefore, discontinuities in displacements that
occur as the crack speed v traverses the ranges indicated in Eqgs. (18a—c) and (18d-f) will arise from the
behavior of the crack-opening displacement functions (U, V).

In this regard, it is seen that the non-integral terms in the regions (x + &'[y| < 0,x + &'|y| < 0) seen in
Eqgs. (34)-(36) admit the possibility of lines of discontinuity (x + a'|y| = 0,x + #'|y| = 0) in displacement
gradients that radiate from the moving crack edge in a half-space k for crack speeds that exceed the sub-
sonic range for that half-space. This confirms behavior noted via asymptotics for trans-sonic interface crack
extension in an isotropic bimaterial (Liu et al., 1995).

6. General solution

The results (30) and (33)—(36) represent solutions to the unmixed boundary value problem characterized
by Eq. (10). These will also be the interface crack problem solutions if functions (U, V) can be found such
that the crack surface load conditions (3a) can be satisfied. Combining Egs. (30) and (33)-(36) with Eq. (8),
setting y = 0 in view of Eq. (37) and then substituting into Eq. (3a) gives the coupled equations
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du 1 [ dU dr ar 1 [ dv dr
Ry +oly) g = Uv=oR) 27 =y~ U oR) qo = Re+ols) 2 f G007
2
_ R+ sy (38a)
Hilo
dU 1 [dU d¢ dr 1 [ dV dt
—(IA—CORA)E—(RA-F@]A)E C?:_(RN""‘O)IN)a""(IN_wRN)E cdr -
2
_ B+ st n) (38b)
Hil

for the crack-opening displacement gradients (dU/dx,dV/dx) when y =0, x < 0, where no additional
subscripting is implied. Because a steady dynamic solution can be determined only to within an arbitrary
rigid-body motion, obtaining the gradients is sufficient. In Eq. (38), f- denotes Cauchy principal value
integration, and (Rs, ®) are defined by Eq. (31). The other integral coefficient terms are defined for ¢, £ i0
as real and imaginary parts, i.e.

RN F iIN =N= /12R2M1 — ,ulRle
R.Fil,=N,= ﬂszAl(a +b)1 +u1R1A2(a +b)2 (39)
RB + i]B = NB = ,quzoclBl(a + b)l + ,ulRlasz(a =+ b)z

where the definitions (15a)—(15c), (16a)—(16¢) and (26) govern. The relative simplicity of Eq. (38) when
compared with Egs. (30) and (33)-(36) follows from the cancellation of terms proportional to
(by — ay, by — ay) that occurs explicitly when y = 0. For crack speeds that are sub-sonic with respect to both
half-spaces (0 < v < vy), the quantities (N, N4, Np) are purely real. For v > v,, the formulas necessary to
determine the real and imaginary parts indicated in Eq. (39) are given in Appendix C.

Eqgs. (38a,b) are a degenerate case of standard (Erdogan, 1976) coupled Cauchy singular integral
equations. By following a version (Brock, 1999) of typical procedures for such equations, they yield

dv _ ks (IBéRBn)<i71> {5(x+L)cos7w (—_x)vﬂ]

dx o Uy T L TE(X"‘L)
oRg Fl1 —Xx\? sin7mv
+— R E+In(—)[5x+L cosnu—(—) —]
My ;( N ) b4 ( ) L/ n(x+1L) )
dV oRs +1 —x\' sinmo
—=— Li¢&—R — | [6(x + L) cos —(—) 7]
dx = o 26 Am( 1 N wreosm = {7) 2 D)
TR +1 —x\? sinmv
+ R é—i—[n(—)[éx—&—L cosnu—(—) 7]
Hity Z:( N 1) x ( ) L/ n(x+1L)
for x < 0. Here summation is understood to be on the parameters (¢.,#n,,v+), where
(L =wcosTmoy +SINToy, Ny = ®SINTOL — COS T4 (41a)
1 24+wBLy 1
=t el e et 7 41b
U= v an 20A—BFy 2 (41b)
24 B+ . 2wA — B
COS L4 = + w( /C) SIN vy = — @ T (41c)

VI+ a2\ /442 + (B£ )’ VI+ a2\ [442 + (B£ )’
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In Eq. (40) and Egs. (41a)—(41c) the definitions
A =Ry + L, B=2Ryly— Rylz — Rzl

x =1/ C: —443B} (42)

Ao = R4Ry +1Lidy, Bo=RpRy+1Iply, Co=Rulp—Rpl,

hold, with no additional subscripting implied. Eq. (41b) give the eigenvalues of Eq. (38), and examination
of Egs. (41a)—(41c) and (42) shows that, while (4, B, w, Ay, By, Cy) are real, the quantity y could be imag-
inary. In that instance (£.,7,,v4) are complex conjugate pairs, so that Eq. (40) is still real-valued.

For y =0, x > 0 the formulas

— 1 s dU dt dv dt
=Ml g Ry [ S LRyl [ S
7= Rs(1+ o)1 [(N Ry) o dr [ Retols) e dr r—x @)
L Uy dU dt dr dt
i =2 (Rt ol [ =+ (Iy —oRy) | =
T Rs(1+w2)ﬂ:[ (Ri+ ooly) Cdtt—x+(N oRy) o df 1—x

for the interface stresses can be obtained from Egs. (18a—c), (18d-f), (30), (33)—(36) and (40). Substitution of
Eq. (43) and use of Cauchy integral theory after Brock (1999) produces

o Co\/x\" . 1By X\ sin 7tv
aﬂ:27r(x+L)Z(1$7><Z) Slnnu+2n(x+L);(l_,) <$ 1 )

+
. (44)
T Co X\? . o4 X\? sin 7o
axyi:2n(x+L)zi:(li7>(Z) Smm)+2n(x+L)Zi:(Z) <¥ z >

Here summation is implied on the eigenvalues v., and again, the results are purely real even when y takes
on imaginary values.

Complex eigenvalues are found in static analyses of interface cracks in isotropic (England, 1965;
Erdogan, 1965; Rice and Sih, 1965) and anisotropic (Ting, 1990; Ni and Nemat-Nasser, 1991, 1992) bima-
terials, and in transient (Brock, 1976) and asymptotic dynamic (Liu et al., 1995; Huang et al., 1996) studies
of isotropic bimaterials. They give rise to oscillations in field quantities near the crack edge. In the dynamic
results the eigenvalues were dependent on crack speed: Complex eigenvalues occurred in both studies for
sub-critical crack speeds, i.e. below the values of any body wave, Rayleigh or Stoneley speeds. Liu et al.
(1995) found that the eigenvalues may be purely imaginary for crack speeds that exceed the critical value,
and can be purely real for trans-sonic speeds.

Examination of Egs. (41a)—(41c¢) in light of Appendix C shows that these possibilities exist for the so-
lutions obtained here. Indeed, with the general results (30), (33)-(36), (40) and (44) available, these and
other possibilities can be illustrated in terms of more specific situations. Such illustrations are the focus of
Part II of this study.

7. Comments

As Part I of a two-part study, extension by a semi-infinite crack in plane strain along the interface of two
perfectly bonded dissimilar linearly elastic half-spaces has been treated. Both half-spaces were of a class of
orthotropic or transversely isotropic solid, the material symmetry axes were aligned with the interface and
its normal, and isotropy was a special case. A steady dynamic situation was considered, in which the crack
extended at any constant speed.

Analysis has produced exact formulas for the displacement fields in each half-space for the various ranges
of crack speed. These exhibit the possibility of displacement gradient discontinuities that radiate from the
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crack edge when its speed exceeds the sub-sonic level. Closed-form expressions for the crack-opening
displacement gradients and the interface stresses ahead of the crack have also been produced from the so-
lution to coupled singular integral equations. The expressions demonstrate that the eigenvalues of the
equations can, depending on crack speed, be complex/imaginary conjugates, purely real, or zero. Such
variations are known to control, and perhaps remove, the singular nature of the stresses near the crack edge,
and to introduce sign-changes which occur an infinite number of times at the crack edge.

A key step in the solution process has been the factorization of certain quantities that depend on crack
speed and material properties. This allows the cancellation of terms that induce both branch points and
non-isolated roots in the complex crack speed plane. While these are in general complex, and so are of
limited physical interest, the cancellation process puts, despite anisotropy, the solution expressions into
simple forms. Moreover, effective Rayleigh and Stoneley functions of crack speed emerge that are more
compact than those generally employed in dynamic isotropic studies (Cagniard, 1962; Achenbach, 1973;
Brock, 1976).

These functions, in turn, allow compact expressions, analytic to within simple quadratures, for the
Rayleigh speeds and, when it exists, the Stoneley speed. The latter was found always to exceed the minimum
Rayleigh speed in the two half-spaces. In Table 1, key material properties for five examples of the class of
materials treated here—beryl, cobalt, ice, magnesium, titanium (Payton, 1983; Bloor et al., 1994)—are
given, as well as the Rayleigh speed vg, and the Rayleigh speed non-dimensionalized with respect to the
corresponding rotational wave speed cg. The cr—values are in agreement with data given by Payton
(1983).

All possible dissimilar pairs of the materials save ice have been examined, and only cobalt and mag-
nesium found to have a Stoneley speed. Data is presented in Table 2, along with, for comparison, the
Stoneley and Rayleigh speeds (vs, vg) for two isotropic material combinations (Brock, 1998).

Table 1 indicates that, as fractions of the corresponding rotational wave speeds, the Rayleigh speeds are
similar, as is the case for isotropic materials (Sokolnikoff, 1983). Table 2 shows that the cobalt/magnesium
combination gives a Stonely speed that lies between the two Rayleigh speeds, while the Stoneley speed
exceeds both Rayleigh speeds in the isotropic cases. The closeness of the values in all three situations is
noted.

In Part II of this study, the expressions developed here are examined in more detail for two important
special cases.

Table 1
Properties of some orthotropic/transversely isotropic materials
o p m cqyy (GPa) CR vr (m/s)

Beryl 3.62 4.11 2.01 68.6 0.956 5825
Cobalt 4.74 4.07 2.37 75.5 0.962 2802
Ice 4.57 4.26 2.64 3.17 0.959 1705
Magnesium 3.74 3.61 2.3 16.4 0.943 2897
Titanium 3.88 3.47 2.48 46.7 0.936 3016

Table 2

Rayleigh and Stoneley speeds

vr (m/s) vs (m/s)

Cobalt/magnesium 2802/2897 2887
Aluminum?/steel® 2856/2841 3025
Aluminum?/titanium? 2856/2825 3027

#Treated as isotropic.
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Appendix A

In Eq. (24) the formulas

1 g/ Br E ny G ﬂz\/E G\ dt
InGsg = —— / tan~! —k+/ tan~! iJr/ tan™! 2L | =

T ny F}c nk\/ﬁ F;(k ny Hl t

v B VR By VR G\ de
InGg = —— / tan™! —kJr/ tan™! iJr/ tan~! 2L | =

T\ Sy e Jy Fu /B H |t

W E [mVh Eq [V G, \ dt
InGg = —— tan~! =X 4 tan™' =X 4 tan"! £ | =
n ng F}c n F;(l n/\/E Hk t

hold for the cases (18a—c), respectively, when (k = 1,/ = 2). For the cases (18d-f), respectively, we set

(k=2,1=1). In Eq. (A.1) the formulas

Ek = 2M1(1 — mk) (a + b) (OC[B[AkB;C + oth;{akAl) — %CkB;C(A + B)l — %B;{Rl
1 k
Fp = 2M)Ay + (a + b),(BiaAy — o4 BLbLA,) — %c,fAk(A +B),— %AkR,
! k

uul(

A + B') R,
My ,

Gy = 2MM] — ’;" (A+B),R, -
Hkk = —(d —|— b),(a' + b/)k(OCkB;{AI + OC]B]A;()

Gk = ZAAM; — (a/ + bl)l(O(kB;CdkAll + OC]BllAkb;c) — Z—:AkR, — M—CiA (A/ + B,)
He = —2(1 — m)BM. + (d + ), (uBLb, A, — 0,B\a,dy) + 2L BLR, — 24 (4 + B),C,B,
e Wy
Ekl = Elk = 2Ak(1 — m;)B; + 2141(1 — I’Iik)B;C + (akal — b;cbl/)(OCkB;(A] + OC]B,/Ak)
— B (4,B,C + Bic24) — % (4B/C) + BLc2A))
1 k

F}cl = F}k = ZAkA[ — 2(1 - mk)(l — m,)B;cB'[ - (akb'l + a,bf{)(ockB;{A] + OC[B/IA/()

+ B Bl2a, — 4,B.C) + L (B4, — 4B)C))

H Hye

hold, where the definitions (15a)-(15¢), (16a)—(16¢) and (25) apply.

Appendix B

For v > vy, with ¢y £ 10 understood, Eq. (17) gives

S = w, (F FiEy), mp < co < min(mg/ By, n;)

S = pupt,(Fuy TiEy), max(ng,n;) < co < min(m\/By, ni\/B;)
S = wpt;(Fu F1Gy ), nk\/,[Tk < ¢y < ny

S = o, (Hy TiGy), max(mg, n\/B)) < co < min/By

(A.2)

(A.3a)

(A.3b)

(A4a)

(A.4b)

(A.5)
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where Eqgs. (A.2)-(A.5) hold. For ¢y > max(ny ﬁk,nlﬁ),

S
S = COMM] + (d+ D)y (d + B), (B + uBiAL) +EE (4 B Ry + (4 4 B R) (B.2)
ey Hy Hye
In Egs. (B.1) and (B.2), the definitions Eqgs. (15a)—(15¢), (16a)—(16¢) and (25) hold. By letting £ = (1,2)
when / = (2,1), Egs. (B.1) and (B.2) cover the six cases Eqs. (18a—) and (18d-f).

It is noted that the right-hand sides of Egs. (13a), (13b) and (14) differ only because the roles of the
subscripts 1 and 2 are reversed. Therefore, when v > vy, with ¢y £ 10 understood, the generic formulas

+imB’ Ay :Fia —Ay :Fi —By +imb’ By
B L e R (B.3)
Ylatib) |4y | Blatib)| 4, B(atib) | By YB(a£ib) | B,

hold when n < ¢y < n\/B, where the subscripts k = (1,2) are understood here and on the matrix factors.
Similarly, the formulas

mB’ Ay +id’ —Ay -1 —By +imb’ By
v —da)|4,]7 BB —-a)| A4y |7 BW —da)| B,y | YB ¥ —d)|By

govern when ¢ > n+/P. The coefficient matrices of the elasticities on the right-hand sides of Egs. (13a) and
(13b) take the forms

—PA(a+b), + (1 —mp)b,B,Or FimibiR,
PM,; F ib,OvB(a + b), —YR 1
—ayPM; — BiQyA)(a +b),  ayy R,
—B;OM; — ayPyoyBi(a+ b), mBiR,

(B.4)

respectively, when n;, < ¢o < min(ng+/f;,n;), where (k = 1,/ = 2). These are replaced by

i —PkAlal + (1 — mk)b;(B;(Qk + l(b;(Aka + H(Albll) —mkbﬁc(ClB; + IC%AI)
L PkAI - b;{QkOCIB/[a[ + ]-B,[[b;CQkalb/[ - (1 - m,)Pk] l//k(—C%A] + ICIB,])

i —A/(akPk —+ BﬁQka,) + i[akPk(l - m,)B} -+ B%QkA/bﬂ akl//k(C%Al F ICZB;)
i _BiQkAl —+ akPkoc,B’lb’[ + IB,I [BiQk(l — ml) + akPkoclAl] kai(C%Al :F ICIB/[)

when max(ny, n;) < co < min(ng+/py,n1+/p;). The results

[ BMO; — Pedy(a+b), q:imkbg,R,]

; B.7a
_Ple Fib OvuB(a+b), —YR, ( )

(B.7b)

[ —B,%,QkA,(a + b)l + ia;{Ple :Fia;(tﬁle
—BiQle + iajcPkoclBl(a + b)l kalchl

then hold for nk\/ﬁ_k < ¢g < ny;, while the forms

[ PA)(d + b)), + b,0(1 — my)B, +ib,0cd;  —myb,R)

. . B.8a
—PkM/ + 1b;(Qkoc,B’,(a’ -+ bl)l :I:llka; ( )

(B.8b)

[ BOAl(d + V), +iaPM]  Fia,R)
akPkoclB’l(a’ + b/)l + 1BiQkMI, :FlkaﬁR,l
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are valid when max(ng, n;\/f;) < co < ng+/ . For ¢o > max(ni+/ B, niv/ ;). finally, the matrix elements
are

b;(Qlei + PkA’](a’ + b,)l —mkb;(R’,
:I:i[b;(Qkot,B/l(a’ + b,)l — PkM[/] illka/l ( )
B.9
a,PM) + BiQyA)(d + 1), A
H[BIOM,| + dPooyB)(d +b'),] FimBiR,

govern. For the right-hand side of Eq. (14), the formulas (B.5)—(B.9) still hold, but now (k =2,/ = 1). By
properly choosing the subscripts (, /), the forms (B.3) and (B.4) can be combined with Egs. (B.5)—(B.9) to
identify the real and imaginary parts indicated in Eq. (33) when v > v, for all the cases (18a—c) and (18d-f)
in either half-space 1 (y > 0) or half-space 2 (y < 0).

Appendix C

For v > vy, with ¢y £ 10 understood, Eq. (39) yields the results
N = AR, — e AM; F 1By, (1 — mi) R, — 1y, CeM))
Ny = wArakR; + A (a + b),ciAx F 1B, Aibi R, + 1, CiBiA (a + b)) (C.1)
NB = —,LLIOCkB;{b;CR[ + ,ukcx/B,(a + b)lciAk + iB;C[/,LlockAkale + ,ukaoz,B,(a + b)l]
when n; < ¢ < min(ng+/py, n;) for the cases (18a—c) by choosing (k = 1,/ = 2). The set (C.1) is replaced by
N = 4edi (i — wet) — BB [ Co(1 — my) — i, Ce(1 — my)] F igy[eA,(1 — my) By, + 4,C,B))]
+1 11 [CkAk(l — m;)B’, + AleBk] (C2a)

Ny = ,LL[Ak(C[ Qg — C]B,b,) + ,LLAA (ckAkag CkB;(b/l) F lﬂlAk(C%Alb;( + C;B’,ak)
F ll"l’kAl(ckAkbl + CkBka;) (CZb)

Np = — B, (c;Aib, + CBiay) — wouB)(c; by + CiBLay) F ipyou B (c;A,a; — C,B)b})

F i,ukoc,B’](ciAka; — CkBl bl) (C2C)
when max(m,n;) < co < min(ng\/B, n1/B;), and by
N = +i(uR.M, — wRM)) (C.3a)
Ny = —wR A (d + b)), FiRAi(a+b), (C.3b)
Ny = —wRio4B (d + '), F i R0uB,(a + b), (C.3¢)
when n;+/f, < ¢y < n;. The formulas
N = B [ CiMy — (1 — mp)R)] F idi (u, R — .U/cC/%M//) (C4a)
NA = —Ak[,ulb;(R’l + /chiA'[(a’ + b,)l} F i[ulAkakR'l — ,ukaB;{A'l(a’ + b,)l] (C4b)
Ny = —pouByarR) — iAo By(a + b'), £ i[wouByb,R, + 1, CiByoyB)(a' + b)) (C4c)

hold when max(ny, n,\/F,) <y < nk\/ﬁ_k, while for ¢y > max(ng+/f;, n,\/ﬂ_,), the formulas
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N = wRMj — p,RiM;
Ny = Ry (d + 6, + R A + b)) (C.5)
Na = il RieBy(d + ), + uRyiB)(a + )]

govern. The corresponding formulas for the cases (18d-f) follow from Egs. (C.1)-(C.5) by setting (k =
2,1 =1) and reversing the signs on the right-hand sides of the formulas for N. In all these formulas, the
definitions (15a)—(15c¢), (16a)—(16¢) and (25) apply.
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